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Kiri Wagstaff is a computer scientist and researcher at the Jet Propulsion Laboratory, 

California Institute of Technology.1 

 am here tonight to talk about my favorite planet and my favorite project right now at the Jet 

Propulsion Laboratory (JPL). This work is at the intersection of planetary science and information 

extraction technology. This unusual convergence has yielded a system that can greatly benefit not only 

scientists and researchers but also anyone in the public who wants to know more about Mars. 

I have several talented colleagues at universities and research labs as well as graduate and 

undergraduate students who have contributed to this work: Raymond Francis, Thomas Gowda, You Lu, 

Ellen Riloff, Karanjeet Singh, and Nina Lanza. Our work builds on that of a whole community of 

scholars, and I am very glad to get to share it with you tonight. 

 

EXPLORING MARS WITH ROVERS 

I want to take you on a little journey to Mars and give you an idea of what it looks like from the 

perspective of our exploration agents, which are robots. Figure 1 shows the Curiosity rover taking a 

picture of itself. That is why it looks a little distorted, because it gets the same selfie fisheye effect as 

when you hold up your phone and you are a little too close to it. Here the rover is holding up its “arm” to 

take the picture. This is the only way that we can see what our rover looks like on Mars, since there is 

nobody else there to photograph it. I think that is why I love this picture: we can see the rover as it truly 

is. This is not an artist’s conception. 

I 
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Figure 1. Mars rover Curiosity “selfie” at the John Klein drill site (Feb. 2013). Credit: NASA/JPL-

Caltech/MSSS. 
 

How does this rover explore Mars? We send detailed instructions to our rovers that tell them 

where to go, what pictures to take, what data to collect, what is interesting, and what is not interesting. 

We compose a list of instructions and the rover faithfully executes them. It collects all the data and sends 

it back to us here on Earth. We take some time to think about that data and decide what it means, what the 

next step should be, and where we should go next, before we send new commands to the rover. This is the 

ideal daily cycle: new commands go up, new data gets collected, new data comes back, and we learn new 

things.  

But this is a simplified view of Mars exploration because it is short-term; it only considers the 

next step to take. Yet this mission has been on Mars for five years, so you might reasonably wonder what 

we have learned over the span of those five years. That requires a little more history than just what the 

rover did yesterday and what it should do next. The larger picture is captured in publications that 

scientists write. They have had more time to think about the data than just overnight. They digested them 



35| Juniata Voices 
 

to tell us not only what the rocks are made of, but which rocks are unusual and which ones yielded new 

discoveries. Of course, everybody is interested in finding evidence of past water on Mars, but there are 

places where we found things we did not even predict would exist, like fluorine. Not every discovery ends 

up in a press release. You might not know about it unless you dug through the scientific literature, and 

that is a barrier.  

 

   
Figure 2. Three images collected by the Curiosity rover showing layered rock, the rover’s wheels, and a 

drill hole. Credit: NASA/JPL-Caltech/MSSS. 
 

Figure 2 shows examples of some of the images that this rover collects. On the left is an image of 

layered rock that could give us clues about the past history of flowing water. In the middle is an image 

taken from under the rover to examine the state of its own wheels. On the right is the result of the rover 

drilling into a rock. Drilling allows us to determine what the rock is made of, not just what the surface 

dusty layer is made of. After five years of exploration, we have created a lot of graffiti on Mars by 

making these drill holes. We are perturbing the environment as we are studying it, and we take pictures of 

the artifacts that we have left behind. The rover also leaves tracks everywhere it drives. You can see these 

from Mars orbit. You can look down and trace where the rover has driven by finding its tracks. 

All of these images are archived by NASA. Anything I show you here today is yours, since all of 

the data were collected with taxpayer money. There are no premiums or copyrights or access fees for 

these data. I encourage you, if you are curious, to explore it because it is yours. You can go to the 

Planetary Image Atlas2 and do a search, right now if you want, although I hope you’ll pay attention here 

to the talk. Maybe take a look after the talk. 

This rover is called Curiosity, but its official name is the Mars Science Laboratory to reflect that 

it is doing science on Mars. It has collected half a million images with its mast camera, a million and a 

half images with its hazard camera, and six million images with its navigational camera. That will keep 

you busy for a while, right? There is such a wealth of data that it can be overwhelming. I can point you at 

these data and then what do you do with it, how do you search through it, where do you find the good 

stuff?  
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Figure 3. MSL Curiosity Analyst’s Notebook list of per-sol activities from sol 1696 to 1702. 

Screenshot from https://an.rsl.wustl.edu/msl/mslbrowser . 
 

There is a tool called the MSL Curiosity Analyst’s Notebook3 that is trying to help you get one 

step closer to what the data mean. I did not develop this tool, so I will just make an advertisement for it: 

our friends at the Geosciences node of the Planetary Data System set this up. You can go there and get a 

timeline of the mission and see what the science objectives were (see Figure 3). If you click on an 

individual day (sol), you will see all of the data (pictures, spectra, etc.) collected on that sol. A day on 

Mars is called a sol since it is not exactly the same length as an Earth day, and we do not want to confuse 

people. A sol is one rotation of the planet, which on Mars is about forty minutes longer than the Earth 

day. You can read the narrative that goes along with what these data were intended to study: why these 

were collected, or why were we looking at the rover’s wheel that day. You can find out because it is all 

annotated by the scientists and mission planners. I highly recommend reading it. 

This rover has spent over 1,500 days on Mars. You are probably thinking, “I do not really want to 

read 1,500 days of descriptions of Mars activities.” You might prefer to get a pointer to the good stuff, 

where we discovered something exciting or new. This is the real question that has motivated our work. 

What have we learned from five years on Mars? What do we get for all of that money we invested, all of 

the time, the scientists’ and engineers’ efforts? In addition, countless student hours of effort in the form of 

internships and other contributions have gone into making these what they are today. There is a lot of 

human effort, not just dollars, involved. 

To address that question, we turn to information that humans write about their discoveries. One of 

the things they write about are observational targets on Mars, which are usually individual rocks or soils. 

Instead of calling them “target one,” “target two,” “target three,” and so on, Mars scientists give them 

nicknames. You will see things like the John Klein drill site, the Cumberland drill site, the Sheepbed 

https://an.rsl.wustl.edu/msl/mslbrowser
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formation. This is a uniquely human thing: we find it easier to talk about something when it has a name. 

The way we distinguish one thing from another is to give it a name. Papers written about Mars locations 

do not refer to rock #527; they instead say “John Klein.” And that makes it a little confusing for those of 

us who want to search through written text. Is “John Klein” a person, a rock, a soil, or a sand dune? In this 

case, John Klein was an actual person who lived on Earth. He was part of this rover’s mission, and he 

contributed to its design and implementation. Unfortunately, he passed away before the rover landed on 

Mars. The mission, as an homage to him, named the first site that the rover drilled after him. There is a lot 

of emotion and human investment in these named targets that have meaning far beyond their composition, 

which is the scientific thing that we seek to discover. 

 

 
Figure 4. Twelve rover drill sites in Gale Crater, Mars.  

Credit: NASA/JPL-Caltech/MSSS/UofA/USGS-Flagstaff. 
 

Figure 4 shows a montage of different drill holes that the rover has created. Mojave, Big Sky, 

Buckskin: these are all Earth place names. The drill holes do not share properties with the Earth locations; 
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they are just convenient names. Figure 4 also shows a plot of the rover’s traverse. It landed at the Ray 

Bradbury landing site (many of you will recognize that name), and then it drove off to Yellowknife Bay, 

which is a place in Australia, and then it drove along to Darwin, also in Australia, and so on. Pahrump is 

in Nevada. And now Mars as well. 

If I wanted to find out what is known about, say, the Buckskin drill site, I can go to Google and 

search for “Buckskin.” As you might predict, it is not going to give me very good results. None of those 

are relevant to the Mars target. How can I improve this search to find out information about the Mars 

Buckskin? I need to be more specific in my search. If I search for “Mars Buckskin,” I find in the top four 

results that three of them refer to the Mars target I wanted. Unfortunately, this only works for things 

where someone has written about them on the internet that Google has indexed. Most of our hundreds of 

thousands of Mars targets do not have web pages dedicated to them. For example, I tried searching for 

“Mars Lubango,” which is a different drill site, and I could not find anything relevant. In fact, I got all 

French results, probably because the word “mars” is also the word in French for the month of March. 

Maybe this target never had a website published about its contents and that is why I cannot find anything. 

That is disappointing. 

Further, I want to be able to ask questions that are not even about specific targets. I want to know 

which of the Mars targets that we have studied contain a specific element, like fluorine, or a specific 

mineral, like hematite. Where is there hematite on Mars? We have been studying Mars for so many years, 

and I cannot even ask that question. What about higher-level questions about the scientific community: do 

we have consensus about what a given target is made of? How does scientific opinion evolve over time? 

Even if they are looking at the same data, people may perform different analyses and reach different 

conclusions that supersede the earlier ones. What we really need is to analyze not the Web but the 

scientific literature that is written about Mars. That is time-consuming for humans and tends to require 

scientific training. Can computers help us with this problem? Can they analyze and understand written 

human language? 

 

MACHINE READING 

You may be familiar with IBM’s Watson system, which was able to beat humans at Jeopardy!. 

Watson is a highly specialized, highly trained, artificial intelligence that could not only read the clues in 

the game but also read through an enormous amount of information behind the scenes. Watson had to be 

able to search better than Google, and with more understanding than Google, to assemble structured 

knowledge about states, capitals, people, history, geography, and all of the other categories that a good 

Jeopardy! player would know. Its success was a landmark moment for artificial intelligence because, like 

chess before it, we thought this was something only humans could do well. Could we use a similar 
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approach to process a lot of text, pull out the structured pieces, and answer reading comprehension 

questions for science?  

 

 
Figure 5. Excerpt from a paper by Jeffrey R. Johnson4, annotated to show targets, minerals, and 

compositional relationships (“contains”). 
 

It turns out that scientific papers are much more challenging. Figure 5 shows a single sentence 

from a scientific publication that talks about Mars targets. If I want to extract information about targets 

that contain specific minerals, then I can ask the reading comprehension question: does Big Sky contain 

magnetite? “Likely.” Maybe. As a reader, I do not know. What about whether it contains hematite? 

“Possibly.” Does Telegraph Peak contain magnetite? I think most of us would be reluctant to conclude 

that. There is some similarity here, since they are both “spectrally flat,” but the author is probably only 

talking about Big Sky in terms of magnetite. But you really have to think this through to be able to answer 

the question. This is not like “what is the capital of Tunisia?” That is something I can easily look up in an 

atlas or a gazette. Even Google could tell me that answer, with probably 100% certainty.  

If these papers were written to say “X contains Y,” something very concrete, confident, and 

simple, then this task would be very easy. I could scan through all of these documents, pull out all of 

those statements, and put them in a database where you could search it. You could answer questions like: 

“Where do we find fluorine?” You could answer even the high-level question, “Is there consensus about 

what Big Sky is made of?” because I could give you all the results for Big Sky and you could 

immediately see whether they agree or do not agree.  

Instead, scientific writing is one of the hardest forms of writing to analyze, as you may know if 

you are student who has to read papers for a class, like papers from the scholarly literature, not just a 

textbook, which is already hard enough. The writing is dense and it uses complex grammar, a lot of 



40| Juniata Voices 
 

passive voice constructions, and complex noun phrases. Nowhere in this sentence does the word 

“contains” appear, even though that is the relationship being described.  

The authors are not deliberately trying to make reading difficult. The ambiguity inherent in 

“likely” and “possibly” is being expressed in what is called “hedging language” that allows the writer to 

avoid full commitment. This is important, because there are many things we do not know with certainty. 

This sentence is talking about a pile of dust on a planet 140 million miles away. The authors are working 

with the data available, but no one is there on Mars, and no one can put Big Sky in a lab to do really 

detailed analysis. It is all very indirect. So the best they can tell us in this case is that it is probably 

magnetite. There is only a weak downturn in the spectrum, so it could be minor hematite, but this could 

be wrong. Maybe someone else will analyze more data later and give us a better answer. The uncertain 

language is difficult but necessary. 

Further, it can be a challenge just to recognize real Mars targets in text. Big Sky is a resort in 

Montana; it is a movie from 2015; it is a lot of other things. Telegraph Peak is a mountain in California, 

among other things. All of these aspects make it very hard for a computer to read these papers for us.  

In our work, we built a system to tackle this problem, despite the difficulties. We took all of the 

publications from one specific venue, the Lunar and Planetary Science Conference. It generates about 

2,000 new papers every year, so after three years, we ended up with almost 6,000 documents. Fortunately, 

these are not big journal papers. We started here on purpose. Each paper is an extended abstract that is 

only two pages long. Altogether we have seven million words, and we want to go through and find the 

ones that teach us something about Mars.  

 

THE MARS TARGET ENCYCLOPEDIA 

From those words, we built the Mars Target Encyclopedia (MTE). This is an automatically 

generated searchable encyclopedia, and our vision was it would have an entry for every target on Mars 

that collates in one place everything that has been published about that target. What is the target made of 

and what do we know about it? It would also show you individual excerpts from the source publications 

to let you immediately check each statement. The MTE would also link to the original publication, so if 

you are interested, you can click through and read the full document yourself.  
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Figure 6. The Mars Target Encyclopedia reads scientific papers to find entities, compositional relations 

between entities, and then store the result in a database with a searchable web interface. 
 

To achieve this goal, the MTE must be able to read thousands of papers and find compositional 

statements about what elements or minerals are in a given target. Figure 6 shows the process of going 

from a PDF document to a searchable database. We break this into two stages. The first step is to find all 

of the “entities,” which are places where a target, element, or mineral is mentioned. For elements, we 

have the periodic table. For minerals, you might be surprised to learn that there are over 5,000 different 

minerals defined by the International Mineralogical Association.  

However, the most challenging group is the targets themselves. I hope you have already gotten a 

sense of that, with Big Sky and Telegraph Peak and John Klein. Target-ness is not obvious from the name 

like it is for a mineral, where most of them end in ‘-ite’. The Curiosity mission can provide a list of target 

names, but that list is continually growing, unlike the periodic table. We identify new targets almost every 

day from Mars. The list is always out of date. Therefore, we wanted to go beyond blindly applying lists to 

find terms and instead use machine learning to help automatically learn the new names. This gives the 

MTE the kind of adaptability that humans have. Even if I only gave you a few examples, you probably 

would be able to find many of these new targets inside the text. You see something like “the Big Sky 

tailings were spectrally flat.” Even if you don’t know what “spectrally flat” means, if you saw another 

sentence that said “the John Klein tailings were spectrally flat,” you would easily conclude that “John 

Klein” is also a target. You are very good at pattern recognition. 

We want the computer to learn to do this as well. There is a system called CoreNLP from 

Stanford that allows you to train a custom model to do exactly that.5 Stanford does not care necessarily 

about Mars targets, so their system does not yet know about them. We trained it with our own data, by 

going through and marking them up the way I showed you in Figure 5. CoreNLP reads through those 

manually annotated documents and learns a model to find elements, minerals, and targets in new texts. 
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This is a pretty standard approach in information extraction or machine reading to help find the entities of 

interest. And how well does it work?  

 

 
Figure 7. Entity recognition performance using lists, machine learning (ML), or both. 

 

Figure 7 shows that just using the lists (the periodic table, the mineral list, and our list of known 

targets from the mission) works pretty well to find elements (about 83%), better for minerals (85%), and 

not as well for targets (64%). Using machine learning (CoreNLP) on its own improves element detection, 

does worse on minerals, and does abysmally on targets (43%). However, using the lists and the machine 

learning in concert yields the best overall performance, and it dramatically improves the performance on 

targets (77%), which is exactly what we were hoping for..  

A limitation of the lists is that they can also refer to things that are not targets. Anytime I 

encounter the word “hydrogen,” it is probably talking about the element. But it is not the case that every 

time I see the word “Ithaca,” it is a Mars target. In fact, when I say “Ithaca,” your first thought is probably 

not “oh yeah, that one on Mars,” right? There are Earth Ithacas in New York and in Greece. We reuse 

names a lot on the Earth, and now we are doing it on Mars. If you see “Ithaca” in one of these documents, 

it could mean the Mars target, but it could also mean the one in New York because Cornell University has 

some very active planetary science researchers that publish a lot of papers about Mars. They include their 

affiliations in the papers, so the same paper could include Ithaca, New York, and also the Ithaca target on 

Mars. The authors know that, as a human, you can tell the difference, so they will not say “Ithaca on 

Mars,” they will just say “Ithaca contains high levels of calcium” and you will know that they are not 

talking about New York. It is much harder for the machine to do that. But we can improve with machine 

learning, and even though it is not perfect, it is getting us most of the way to finding what we want to 

find.  
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The second step in the MTE is to decide when there is a relationship between targets and 

elements and minerals. For example, consider the sentence “the mineralogy of Confidence Hills is 

dominated by plagioclase, augite, and hematite.” This is one of the clearer examples of a compositional 

relationship, yet it still does not use the word ‘contains’ or ‘composition’ or anything like that. The goal is 

to make a yes or no decision about whether a given pair has a compositional relationship. A simple rule 

that votes “yes” whenever a target and a mineral appear in the same sentence does pretty well (59%). 

However, it makes a lot of mistakes, especially false positives in which it claims there is a relationship 

when there isn’t one. To reduce this kind of mistake, we use a machine learning method called jSRE.6 We 

gave it many positive and negative examples, and it learned the relevant patterns. This approach is a bit 

lower on overall performance (53%), but it makes far fewer false positive mistakes. That is the right 

direction to go, because we would rather have our database miss some relationships than include ones that 

are incorrect. This is still an open area of research. 

After this testing, we turned the computer loose on all 6,000 documents. While it took us humans 

about half an hour to read each document, the MTE processed each one in about five seconds. Compared 

to the contents of the 118 documents that we had manually annotated, the computer found many more 

elements, minerals, and targets and more than doubled the number of relations. You might be wondering: 

if we went from 118 to 6,000 documents, how come the number of relations only doubled? The answer is 

that we had already annotated the most relevant documents that discussed Mars targets. The Lunar and 

Planetary Science Conference also includes papers about the moon, other planets, comets, and more. 

I will show you a couple of examples of what the MTE found.  

• “Link, which was one of the first K-rich conglomerate targets observed with ChemCam…” 

The MTE concluded that target “Link” contains “potassium.” By the way, please never name 

anything Link; it is far too generic. However, Link is a real Mars target. As you can see, the 

MTE has to be able to find abbreviations like “K,” not just the fully spelled out element 

names. 

• “The RN crystalline component is depleted in MgO and FeO relative to JK and CB because 

of the absence of olivine and enrichment of magnetite in the latter.” “JK” and “CB” were not 

in our target list, because people made them up. They got tired of typing “John Klein,” so 

they used “JK.” “CB” is “Cumberland,” and “RN” is “Rocknest.” You would have to read the 

entire paper to see early on where they define those abbreviations. The MTE was able to find 

them due to the surrounding language. 

There are also some mistakes: 
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• “The results indicate that the dip of the Shoemaker Fm impactite section…” The MTE 

concluded that “Shoemaker” contains fermium, but instead this is a reference to the 

Shoemaker formation. There is no compositional relationship. 

• “Finally, the Bilanga diogenite has a model age that seems older but still similar within the 

error than basaltic and cumulative eucrites.” In this case, there is a Bilanga target on Mars, 

but this sentence is talking about a meteorite on Earth also called Bilanga. In addition, 

“diogenite” is a type of meteorite, not a mineral. These are subtle challenges. 

However, most of the MTE’s findings are correct, and you can now search the resulting database. 

You can search for a target named Dillinger and find that the MTE knows about seven properties and 

three different publications about Dillinger.  

 
Figure 8. MTE search for “hematite” showing search results and spatial distribution on Mars. 
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You can also create queries that were never possible before, like “Where have we found hematite 

on Mars?” Figure 8 shows nine search results and highlights in red every Curiosity rover site from which 

a finding about hematite was published.  

To summarize, the goal of this project was to connect Mars rover data to what has been published 

about Mars and be able to answer questions about what we have learned from the mission. We want 

everyone to be able to easily search and access this knowledge. The Mars Target Encyclopedia is also 

enabling us to ask questions that could not be previously answered without a lot of human effort. What is 

most exciting to me personally is that this is an example of AI helping us do better science. It is helping 

us push the boundaries of what science is and what is accessible beyond what one human mind or one 

pair of eyes can read. You do not have to be a scientist anymore to access this information. Anyone can 

type in a search box and find out where the hematite is in these publications. 
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